Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures.

نویسندگان

  • Ramanan Sekar
  • Martial Taillefert
  • Thomas J DiChristina
چکیده

Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. IMPORTANCE A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants. Additional targets for ex situ and in situ degradation by the microbially driven Fenton reaction developed in the present study include multiple combinations of environmental contaminants susceptible to attack by Fenton reaction-generated HO˙ radicals, including commingled plumes of 1,4-dioxane, pentachlorophenol (PCP), PCE, TCE, 1,1,2-trichloroethane (TCA), and perfluoroalkylated substances (PFAS).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental evaluation and mathematical modeling of microbially enhanced tetrachloroethene (PCE) dissolution.

Experiments to assess metabolic reductive dechlorination (chlororespiration) at high concentration levels consistent with the presence of free-phase tetrachloroethene (PCE) were performed using three PCE-to-cis-1,2-dichloroethene (cis-DCE) dechlorinating pure cultures (Sulfurospirillum multivorans, Desulfuromonas michiganensis strain BB1, and Geobacter lovleyi strain SZ) and Desulfitobacterium ...

متن کامل

Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions.

A biological process for remediation of groundwater contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE) can only be applied if the transformation products are environmentally acceptable. Studies with enrichment cultures of PCE- and TCE-degrading microorganisms provide evidence that, under methanogenic conditions, mixed cultures are able to completely dechlorinate PCE and TCE...

متن کامل

Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer.

Trichloroethylene (TCE)-transforming aquifer methanotrophs were evaluated for the influence of TCE oxidation toxicity and the effect of reductant availability on TCE transformation rates during methane starvation. TCE oxidation at relatively low (6 mg liter-1) TCE concentrations significantly reduced subsequent methane utilization in mixed and pure cultures tested and reduced the number of viab...

متن کامل

Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions.

Tetrachloroethylene (PCE) and trichloroethylene (TCE), common industrial solvents, are among the most frequent contaminants found in groundwater supplies. Due to the potential toxicity and carcinogenicity of chlorinated ethylenes, knowledge about their transformation potential is important in evaluating their environmental fate. The results of this study confirm that PCE can be transformed by r...

متن کامل

Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal.

Batch experiments were performed to assess (i) the influence of pH, solution amendments, and mineral aging on the rates and products of trichloroethylene (TCE) transformation by iron sulfide (FeS) and (ii) the influence of pretreatment of iron metal with NaHS on TCE transformation rates. The relative rates of FeS-mediated transformation of TCE to different products were quantified by branching ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 82 21  شماره 

صفحات  -

تاریخ انتشار 2016